

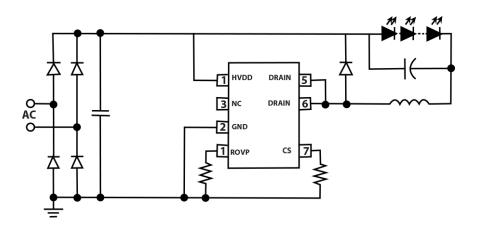
XT410X Emergency Detecting Controller

Features

- Active Power Factor Correction
- PF>0.9 , THD<15% with high line input
- Built-in HV Power Supply Circuit
- Internal 600V/650V Power MOSFET
- No VDD, COMP Capacitor Design
- Programmable OVP
- QR Operation Mode for High Efficiency
- High Output Current Accuracy<±3%
- Ultra-low Operation Current
- Good Line and Load Regulation
- Built-in Protections: Output Over Voltage Protection (OVP) Cycle by Cycle Current Limit (OCP) Leading Edge Blanking (LEB) LED Open and Short Protection Line OVP
- Thermal Fold-back (OTP)
- Package Available with SOP-7, DIP-7

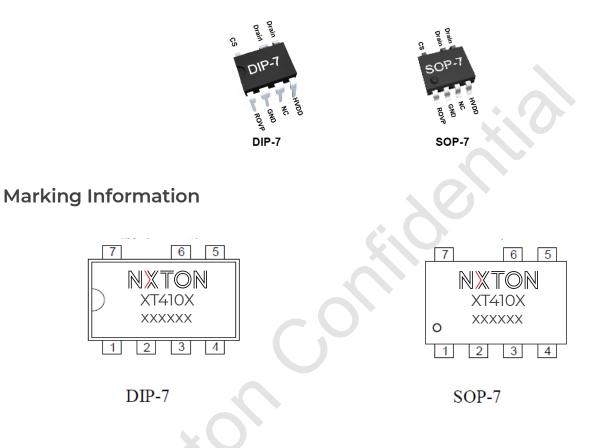
Applications

• LED Driver


Description

XT410X is a family of highly integrated Constant Current LED power switch. The IC utilizes Quasi-Resonant (QR) Buck topology with active PFC control for high PF, low THD, and high efficiency.

XT410X integrates internal demagnetization detection circuit and 650V/600V power MOSFET with high voltage startup, which eliminates auxiliary winding for power supply and demagnetization and simplifies the design and production cost of the system. Additionally, the system surge performance is also optimized in XT410X to pass 2.5kV surge level with minimum system cost. The IC adopts accurate current sensing, close loop constant current control to achieve high precision CC control with excellent line and load regulation.


XT410X integrates functions and protections of Cycle-by-cycle Current Limiting (OCP), Thermal Fold-back (OTP), Line OVP, Output Over Voltage Protection (OVP), LED Open/Short Protection, etc.

Typical application(non-isolated circuit)

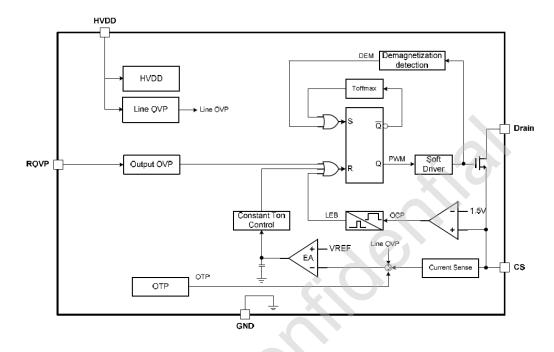
Pin Configuration

Output Power Table

Part Number	Package .	Maximum Output Current (176-265 Vac)			
		36V output	72V output		
XT4108A2	SOP-7	150mA	110mA		
XT4101A2	SOP-7	200mA	130mA		
XT4102A2	SOP-7	300mA	240mA		
XT4103A2	SOP-7	400mA	270mA		
XT4103B2	DIP-7	400mA	270mA		

Note: Maximum output power is constrained by IC maximum Junction Temperature and determined by ambient temperature and PCB. The system actual maximum output power is determined by the test.

Pin Description


Pin Number	Pin Name	I/O	Description	
1	ROVP	I	Output OVP adjustment pin. Connecting a resistor to GND can continuously adjust the OVP point. When Rovp< $50k\Omega$, the system is closed.	
2	GND	Ρ	IC Ground Reference Pin	
3	NC		Left floating in use	
4	HVDD	Ρ	IC HV Supply Pin	
5, 6	Drain	0	Internal power MOSFET Drain pin	
7	CS	I	Internal power MOSFET Source and current sampling pin	

Ordering Information

Part Number	Description		
XT4108A2	SOP-7, Pb free in T&R, 4000Pcs/Reel		
XT4101A2	SOP-7, Pb free in T&R, 4000Pcs/Reel		
XT4102A2	SOP-7, Pb free in T&R, 4000Pcs/Reel		
XT4103A2	SOP-7, Pb free in T&R, 4000Pcs/Reel		
XT4103B2	DIP-7, Pb free in T&R, 50Pcs/Tube		

Block Diagram

Absolute Maximum Ratings (Note 1)

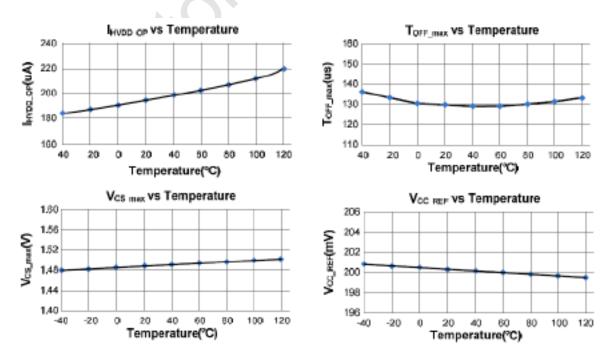
Part Number	Value	Unit
HVDD Voltage	-0.3 to 650	V
Drain Voltage	0.3 to 650	V
CS, ROVP Voltage	-0.3 to 7	V
PDmax, Power dissipation @TA=50°C (SOP-7) (Note2)	0.6	W
θJA, Thermal ResistanceJunction to Ambient (SOP-7)	165	°C/W
PDmax, Power dissipation @TA=50°C (DIP-7) (Note2)	0.9	W
Package Thermal ResistanceJunction to Ambient (DIP-7)	105	°C/W
Maximum Junction Temperature	150	°C
Storage Temperature Range	-65 to 150	°C
Lead Temperature (Soldering, 10sec.)	260	°C
ESD Capability, HBM (Human Body Model)	3	kV

Recommended Operation Conditions

Parameter	Value	Unit
Operating Junction Temperature	-40 to 125	°C

Electrical Characteristics (Ta = 25°C, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit.		
Supply Vol	Supply Voltage Section (HVDD Pin)							
HVDD_ST	Start-up current into VDD pin	HVDD< HVDD_ON	0.8	1.4	2.0	mA		
HVDD_ST	Operation Current	Fsw=7kHz	120	220	250	uA		
HVDD_on	HVDD Startup Voltage		13	15.5	17	V		
HVDD_off	HVDD Under Voltage Lockout Enter		4.8	5.8	6.8	V		
Timing Sec	tion				<u> </u>			
T _{dem_blank}	Demagnetization Detection blanking Time	(Note 3)	0.8	1.4	2.0	us		
	Maximum ON Time	(Note 3)	4.9	5.2	5.5	us		
Toff_max	Maximum OFF Time		100	140	180	us		
F _{sw_max}	Maximum Switching Frequency			125		kHz		
Current Se	nse Input Section (CS Pin)							
V_{CC_REF}	Internal Reference for CC Loop Regulation		196	200	204	mV		
Тіев	OCP Leading Edge Blanking Time			500		ns		
V _{CS_MAX}	Current Limiting Threshold		1.4	1.5	1.6	V		
T _{D_OC}	Over Current Detection and Control Delay			150		ns		
Line OVP								
	Line OVP (AC RMS value)		290	310	330	V		
Over Temperature Protection								
Tsd	Thermal Foldback Trigger Point	(Note 3)		155		°C		


NXTON

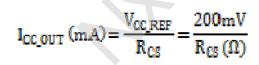
XT410X

Supply Voltage Section (HVDD Pin)							
VBR	Power MOSFET Drain Source Breakdown Voltage			650		V	
		XT4108A2		13		Ω	
	Statia Duria Carma On	XT4101A2		8.5		Ω	
Rdson	Static Drain-Source On Resistance	XT4102A2		4.5		Ω	
		XT4103A2		2.4		Ω	
		XT4108A2	•	0.8		А	
Id	MOS Saturation Current ⁵⁾	XT4101A2		1		А	
	mos sataration current	XT4102A2		2		А	
		XT4103A2		3		А	

- Note 1. Stresses listed as the above "Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Expo sure to maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. Maximum power dissipation PDmax= (TJmax-TA)/0JA. As ambient temperature rises, PDmax will decrease.
- Note 3. Guaranteed by the design.

Characterization Plots

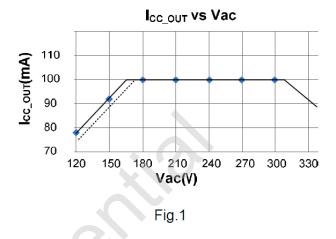
Operation Description


XT410X is a highly integrated power switch with constant current (CC) control for LED lighting applications. The IC utilizes Quasi-Resonant (QR) Buck topology with active PFC control for high PF, low THD, and high efficiency. XT410X integrates internal loop compensation capacitance (COMP capacitance) and VDD capacitance and supports for non auxiliary winding design. Output OVP voltage is continuously adjustable. The system cost can be minimized.

System Start-Up Operation

After system power up, a digital counter is enabled. When 60ms had been counted, IC starts to switch at the lowest frequency, and then the output current slowly rises to the design value.

Constant Current (CC) Control


XT410X samples the peak inductor current in each switching cycle to be as the CC loop feedback, and the high accurate output current can be realized with a high accurate current

In the equation above,

Rcs--- the sensing resistor connected between CS and GND.

When AC input voltage drops, Ton will increase. When Ton reaches Ton_max, the output current will drop to limit IC temperature. The inductor can be set to adjust Ton and the curve. At the same time, in order to ensure the reliability of the system under high Vac, when Vac exceeds 310Vac, the output current will decrease. The output current curve vs. Vac is shown in Fig.1.

NXTOR

Leading Edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike occurs across the sensing resistor. The spike is caused by MOSFET parasitic capacitance and freewheeling rectifier reverse recovery. To avoid premature termination of the switching pulse, an internal leading-edge blanking circuit is built in. During this blanking period (typically 500ns), the PWM comparator is disabled and cannot switch off the gate driver.

Demagnetization Detection

XT410X integrates internal demagnetization detection circuit which eliminates the auxiliary winding and simplifies the design cost of the system.

Timing Control

In XT410X, a minimum blanking time (typically 0.7us) is implemented to suppress ringing when the power MOSFET is off. Meanwhile the maximum OFF time in XT410X is typically 140us.The chip also integrates maximum frequency clamping function (typically 125 kHz) to achieve good EMI performance.

Output Over Voltage Protection (OVP)

XT410X is integrated proprietary OVP control scheme, and the output over voltage can be programmed by the ROVP. The output over voltage

is determined by:

$$V_{OVF}(V) \approx \frac{2.62 \times 10^{10} \times L_F}{R_{OVF} \times R_{CS}}$$

where:

Lp---Inductance in H. Rcs---current sense resistor in Ω Rovp---the resistor connected between Rovp and GND, in $\Omega.$

Auto-Restart LED Open Protection

In the event of LED open circuit condition/output OVP protection, the IC enters auto-restart mode, wherein the power MOSFET is disabled and a digital counter is enabled. When 250ms had been counted, the IC will reset and start up the system again. However, if the fault still exists, the system will experience the above-mentioned process.

On Chip Thermal Fold-back (OTP)

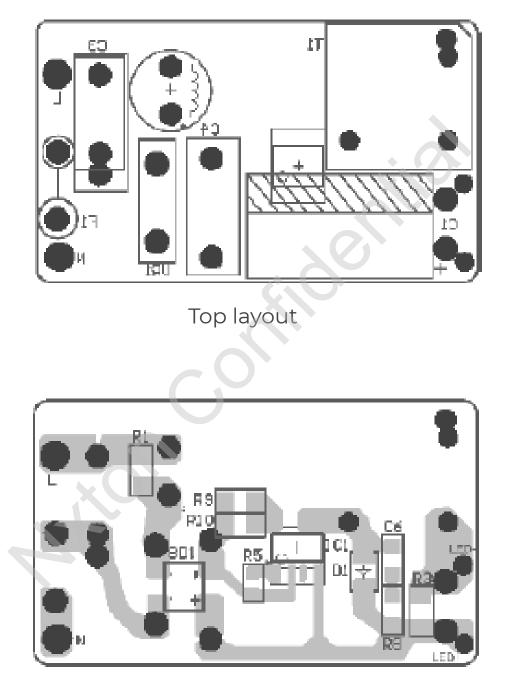
XT410X integrates thermal fold-back function. When the IC temperature is over 155oC, the system output regulation current is gradually reduced, as shown in Fig.2. Thus, the output power and thermal dissipation are also reduced. In this way, the system temperature is limited and system reliability is also improved.

Soft Totem-Pole Gate Driver

XT410X has a soft totem-pole gate driver with optimized EMI performance.

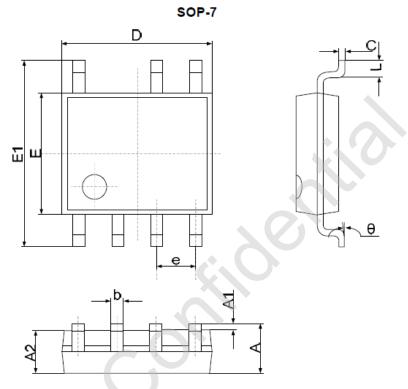
PCB Layout Guidelines

PCB layout is very important for reliable operation. Please follow guideline to optimize performance.

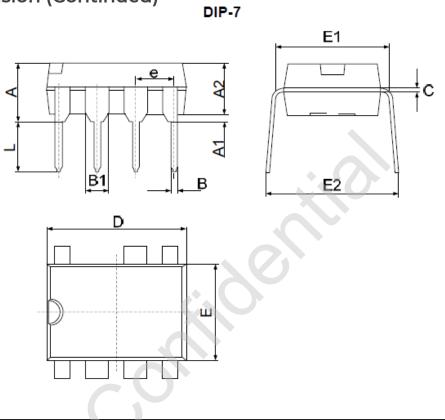

1. The area of main power switching loop should be as small as possible to reduce the EMI radiation, such as the inductor charging loop consisted of the EMI filter capacitor, output capacitor, inductor and IC; the inductor discharging loop consisted of the inductor, freewheeling diode and output capacitor.

2. Use single-point grounding. IC ground and other small signals ground should be connected to terminal ground point, the current sampling resistor ground. And the trace should be as short as possible.

3. Increase the copper area of the Drain pin to improve thermal performance. But too much copper area will worsen EMI performance.



Bottom layout


Package Dimension

Symbol	Dimensions in Millimeters		Dimensions in Inches		
	Min	Max	Min	Мах	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.006	
D	4.700	5.100	0.185	0.006	
E	3.800	4.000	0.150	0.244	
El	5.800	6.200	0.228	0.244	
e	1.270 (BSC)		0.050) (BSC)	
L	0.400	1.270	0.016	0.050	
е	O°	8°	O°	8°	

Package Dimension (Continued)

Symbol	Dimensions in Millimeters		Dimensions in Inches		
	Min	Max	Min	Max	
А	3.710	1.750	0.146	0.170	
A1	0.510	0.250	0.020		
A2	3.200	1.550	0.126	0.142	
В	0.380	0.510	0.015	0.022	
B1	1.524	(BSC)	0.060 (BSC)		
С	0.204	5.100	0.008	0.014	
D	9.000	4.000	0.354	0.370	
E	6.200	6.200	0.244	0.260	
E1	7.320		0.288	0.312	
е	2.540 (BSC)		0.100	(BSC)	
L	3.000	8°	0.118	0.142	
E2	8.400	9.000	0.331	0.354	

Disclaimer

The Information provided by Nxton in this datasheet is believed to be accurate and reliable. Nxton reserves the right to make any change in parameter, circuit design, specification or other related things if necessary without notice at any time. Nxton makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Nxton assume any liability arisinf out of the application or use of any product. No third party intellectual property infringement of the pplications should be guaranteed by users when integrating Nxton instruments products into any application. No legal responsibility for any said applications is assumed by Nxton Instruments.